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Abstract— The field of graph datasets and graph query 

processing has received a lot of attention due to constantly 

increasing usage of graph data structures for representing data 

in different domains. Storing the graph in large dataset is a 

challenging task as it deals with efficient space and time 

management. To ensure the consistency of graph dataset, one of 

the necessary procedures required is a mechanism to checks 

whether two graphs are automorphic or not. Given a graph 

query, it is also desirable to query isomorphic graphs quickly and 

efficiently from a large dataset via its index. In this paper, we 

propose a graph isomorphism querying approach that based on 

graph code. Graph code is a graph representative structure that 

can preserve the structural information of the original graph. 

Graph isomorphism query can be efficiently processed via trie 

that is constructed on graph codes of the data graphs. The 

experimental results and comparisons offer a positive response to 

the proposed approach. 

Keywords—graph data; graph representative structure; 

automorphism; isomorphism; graph querying 

I.  INTRODUCTION  

 Graph is a powerful tool for representing and 

understanding objects and their relationships in various 

application domains. Conceptually, any kind of data can be 

represented by graphs. The power of graphs to model the 

complex datasets has been recognized by various researchers. 

In Chemical informatics and bio-informatics, scientists use 

graphs to represent compounds and proteins. Daylight system 

[11], a commercial product for compound registration, has 

already been used in chemical informatics. In recent years, 

graph datasets have become more in use and the volume of 

graph data increased rapidly.  

 A well-known representation of graph structured data is an 

adjacency matrix representation. Many graph datasets such as 

chemical graphs have more than one vertex with the same 

level. These graphs have more than one adjacency matrix 

representation based on the ordering of same vertex labels, 

and it becomes difficult to identify them uniquely. There are 

possibilities that the same graph is stored more than once in 

the graph dataset leading to the adverse results of mining. 

Also, if stored more than once in different adjacency matrices, 

a single graph affects the consistency of graph dataset [12]. 

 In the core of many graph-related applications, lies a 

common and critical problem: how to efficiently process 

graph queries and retrieve related graphs. In some cases, the 

success of an application directly relies on the efficiency of 

the query processing system. A primary challenge in 

computing the answers of graph queries is that pair-wise 

comparisons of graphs are usually really hard problems. A 

naïve approach to compute the answer set of a graph query q 

is to perform a sequential scan on the dataset’s graphs and to 

check whether each graph dataset members satisfies the 

conditions of q or not. However, the graph dataset can be very 

large and which makes the sequential scan over the dataset 

impractical. Thus, finding an efficient querying technique is 

immensely important due to the combined costs of pair-wise 

comparisons and the increasing size of modern graph datasets. 

Clearly, it is necessary to build graph indices in order to help 

processing graph queries. It is apparent that the success of any 

graph data-based application is directly dependent on the 

consistency of graph datasets and efficiency of the graph 

indexing and querying mechanisms. 
The rest of the paper is organized as follows. Section II 

provides some definitions and introduces the notation that is 
used in the paper. Section III describes the related works in 
this area while the section IV focuses on the proposed 
approach. Our experimental results are reported in section V. 
Section VI gives the conclusion and future works. 

II. DEFINITIONS AND NOTATION 

 This section presents the key concepts, notations, and 

terminology used in this paper, which include: labeled graph, 

graph automorphism, graph isomorphism, canonical label and 

graph code. As a general data structure, labeled graph is used 

to model complicated structures and schemaless data. In 

labeled graph, vertex and edge represent entity and 

relationship, respectively. The chemical compound shown in 

Fig. 1 is an undirected labeled graph. 

 

A. Labeled Graph 

A labeled graph G1 is a 5-tuple, {V, E, ΣV, ΣE, l} where V 
is a set of vertices and E is a set of undirected edges. ΣV and 
ΣE are the sets of vertex labels and edge labels respectively. 
The labeling function l defines the mappings V → ΣV, E → 
ΣE. 

 

 

 

 

 

 

Fig. 1. A Labeled Graph(G1) 
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B. Graph Automorphism 

 An automorphism [9] between two graphs G1 and G2 is an 

isomorphism mapping where G1 = G2. An isomorphism 

mapping is a mapping of the vertices of G1 to vertices of G2 

that preserve the edge structure of the graphs. That is, it is a 

graph isomorphism from a graph G1 to itself.  

 The graph G2 shown in Fig. 2 is automorphic to graph G1. 
 

 

 

 

 

 

 

 

Fig. 2. Graph Automorphism(G1 = G2) 

C. Graph Isomorphism 

 An isomorphism [10] of graphs G1 and G2 is a bijection 
between the vertex sets of G1 and G2; such that any two 
vertices u and v of G1 are adjacent in G1 if and only if ƒ(u) and 
ƒ(v) are adjacent in G2. This kind of bijection is generally 
called "edge-preserving bijection". 

D. Canonical Label 

 A canonical labeling of graph G1 is an isomorphism-

invariant labeling of G1's vertices, i.e., two graphs G1 and G2 

have the same canonical labeling if and only if they are 

automorphic to each other [1], [2]. 

 

E. Graph Code 

 For a graph G1, the code of G1, denoted by c(G1) is the list 
of the form eid{(v), eid_adj,…}… depending on adjacent edges. 
eid is the edge id, v is vertex label on which two edges are 
connected, eid_adj is list of adjacent edge ids for this edge. 

III. RELATED WORKS 

 The significant of using graphs to represent complex 

datasets has been recognized in different disciplines such as 

chemical domain [3], computer vision [4], and image and 

object retrieval [5]. 

 To avoid the ambiguity of representation and inefficiency 

in the graph pattern search, canonical labeling approach that 

produces a unique code for each graph called canonical label 

has been used in Frequent Subgraph Discovery algorithm 

(FSG) [6]. A simple way of defining the canonical label of an 

undirected graph is to use the string obtained by concatenating 

the upper triangular elements of the graph’s adjacency matrix 

when this matrix has been symmetrically permuted such that 

this string is lexicographically largest or smallest among the 

strings obtained from all such permutations. If a graph 

contains |V| vertices, the worst case time complexity to 

compute its canonical code is O (V!) since |V|! permutations 

of vertices have to be checked before selecting the minimum 

(or maximum) code.  

 Other popular attempt for detecting automorphic graph is 

Fast-Graph Automorphic Filter (F-GAF) [7]. F-GAF detects 

automorphic graphs in three phases. In preprocessing phase, 

edge array of the graph is computed by grid traversal 

technique. Then, the grid code is generated in feature 

extraction phase. The grid code is a feature vector consisting 

of the edge array, distinct vertex labels, the degrees and all 

vertex labels with degrees of each of its neighbors of k
th

 graph. 

In pattern matching phase, the grid code of Gk is compared 

with those of other graphs in graph database to check 

automorphism. For large graphs, the length of grid code can 

be very long. It has overhead of space and expensive 

processing time for detecting automorphic graphs.   
A. N. Thaing and K. M. Oo propose Compact Graph 

Representative Structure (CGRS) [8] called edge code. It has 
two phases to generate edge code. In preprocessing phase, the 
input xml file is parsed with xml parser. And then the edge 
codes are generated in code generation phase. The edge code 
is composed of array of edge ids follows by lists of edge ids 
that are connected with this edge. These codes are used in 
detecting automorphic graphs. In querying phase, the edge 
code of the query is sequentially scanned over edge codes of 
data graphs to retrieve isomorphic graph. The structural 
information of the graph such as the two edges are connected 
on which vertex can be lost. This can have large affects on the 
accuracy of the result. It is possible that incorrect results will 
be returned. It also has time overhead due to sequential 
scanning for querying. 

IV. PROPOSED APPROACH 

In this section, our proposed graph isomorphism querying 
approach that based on graph code for efficiently detecting 
automorphic graphs and querying isomorphic graph is 
described. There are two main phases in proposed approach. 
In graph code generation phase, there are two sub-steps: 
preprocessing and code generation. Edge dictionary and 
adjacent edge information play important roles in code 
generation. For a new graph, generate its graph code and make 
automorphism test then determine to add its graph code or not. 
In querying phase, all of the graph codes and corresponding 
graph ids are inserted into trie. Then, query’s graph code is 
probed in this trie to retrieve isomorphic graphs efficiently. 

A. Preprocessing 

In this phase, the graph information such as vertex 
information, edge information, and adjacent edge information 
are generated by parsing input xml files with xml parser. Then 
the edge information of the graph is defined as (Vid,L,Vid) 
where Vid is the vertex id, L is the edge label. Then adjacent 
edge information is generated. Fig. 3 shows graph information 
for graph G1 in Fig. 1. 
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Fig. 3.  Graph Information of G1 (a) Vertex Information (b) Edge 

Information (c) Adjacent Edge Information 

 For each edge from the graph’s edge information, check 

the edge dictionary to determine whether the edge is already 

existed in edge dictionary or not. If not, insert new edge into 

edge dictionary. Then, the edge ids are associated with their 

corresponding edges in graph’s edge information. Edge 

dictionary is shown in Fig. 4. The procedure processing edge 

dictionary is shown as follow. 

 

 

 

 

 

 

Fig. 4. Edge Dictionary 

Procedure InsertEdgeDict(edge_info(G), Edge_Dictionary) 

For each edge ei ∈ edge_info(G) do 

If ∄ ei ∈ Edge_Dictionary then 

 Add new edge information 

return Edge_Dictionary 

 

B. Code Generation 

 A graph is represented holistically into a graph code that 

preserves the structural information of the graph. Every edge 

in the graph is assigned with global unique identifier already 

defined in the edge dictionary. Instead of using the edge itself, 

using the edge id of the edge dictionary can have advantages 

in three ways:  

 Firstly, using the edge id in the code saves the 

amount of storage space. 

 Secondly, using the same id for the duplicated edge is 

effective when constructing the graph code. 

 Thirdly, using the edge id in the code reduces the 

time for finding automorphic or isomorphic graphs. 

 Most of the chemical graphs have a lot of common edges. 

So, edge dictionary uses little memory space. Edge dictionary 

and adjacent edge information are used to generate graph 

code. Graph code for graph G1 is as follows:  

 

c(G1)=1{(c)1,1,1,1,2,2} 2{(c)1,1,(0)2,2} 

  

 The procedure for graph code generation is described as 

follow. 

 
Procedure GenGraphCode(adj_edgeinfo (G), Edge_Dictionary) 

c(G) := Ø 

 For each eadj ∈ adj_edgeinfo (G) do 

 Get id( eadj ) from Edge_Dictionary 

 Find connected vertex v of eadj 

 Add these information to c(G) 

return c(G)   

 

C. Automorphic Detection 

 After computing the graph code of Gk, compares it with 

each graph code Gi in code store (CS), 1 <= i < k, to check 

automorphism. If the graph code of Gk has the same code as 

that of Gi, concludes that the graphs are automorphic and 

append id of Gk to corresponding graph code. Otherwise, add 

the graph code of Gk to CS assuming as Gk is a new graph. 

Procedure for automorphic detection is as follow. 

 
Procedure DetectAutomorphism(c(Gk), CS) 

If k = 1 then 

 Add c(Gk) to CS 

 return CS 

Else 

For each c(Gi) ∈ CS 

 If(c(Gi) = c(Gk)) then 

  Append id of Gk to c(Gi) 

 Else 

  Add c(Gk) to CS 

return CS  

 

D. Graph Isomorphism Query 

 Graph isomorphism query retrieves the graph in the dataset 

that is isomorphic to the given query graph. It can be 

responsively answered without candidate verification by using 

proposed graph code. When the query is entered, it is 

transformed into query’s graph code. This code is probed in 

trie of dataset graphs’ codes. Trie is used as an index to 

narrow down the query response time and search space. Then, 

the dataset graph is returned that is isomorphic to query graph. 

Procedure for graph isomorphism query is shown as follow. 

 

Id  Edge 

1 <C,s,C> 

2 <C,s,O> 

… … 

Vertex id    : 1 2 3 4 5 

Vertex Info : C C C C O 

 

 

 
Vid,L,Vi: <1,s,2> <1,s,3> <2,s,4> <3,s,5> <4,s,5> 

Edge Info: <C,s,C> <C,s,C> <C,s,C> <C,s,O> <C,s,O> 

 

 
Edge: Adjacent Edges: 

<1,s,2> <1,s,3>, <2,s,4> 

<1,s,3> <1,s,2>, <3,s,5> 

<2,s,4> <1,s,2>, <4,s,5> 

<3,s,5> <1,s,3>, <4,s,5> 

<4,s,5> <2,s,4>, <3,s,5> 

 

(a) 

(b) 

(c) 



 

Procedure GraphIsomorphismQuery(q_graph, CS) 

For each c(Gi) ∈ CS 

 Insert graph codes and ids into Trie 

Generate q_graph code 

Probe q_graph code in Trie 

return result 

 The following algorithm describes the step-by-step process 

of our proposed approach. 

 

V. EXPERIMENTAL RESULTS 

 In this section, we present our experimental studies that 
validate the effectiveness and efficiency of our approach by 
comparing it with other existing methods. AIDS antiviral 
screen dataset is used in the evaluation to test the effectiveness 
of our proposed approach. All the experiments are performed 
on an Intel(R) core(TM) i3-4010u 3.0GHz PC with 2GB 
RAM, running the windows 32-bit operating system. All of 
the methods are implemented in java. 

A. AIDS Antiviral Screen Dataset 

 The experiments described use the AIDS antiviral screen 
dataset (AIDS for short). This dataset can be available 
publicly. AIDS contains around 42,000 chemical compounds. 
The graphs have average number of 25 vertices and 27 edges 
and maximum number of 222 vertices and 251 edges. The 
total number of distinct vertex labels is 62. The major portions 
of vertices are C, O and N. All of the graphs are sparse graphs. 
Most of the chemical compound datasets are in the form of 
xml files and image files. So, the required storage space 
between proposed graph code, xml file and image file are 
evaluated. In Fig. 5, it can be seen that the storage space of our 
graph code is significantly less than the other two well-known 
storage formats. 

 

 

Fig. 5. Analysis of Storage Space between Graph Codes, XML Files and 

Image Files 

 In proposed approach, computational time complexity for 
generating graph code takes O(NE+(E*(E-1))/2) where V is 
the number of vertices, E is the number of edges and N is the 
size of edge dictionary. Proposed approach takes NE 
comparisons to insert edges into edge dictionary and get edge 
id from it. For getting adjacent edge information, (E*(E-1))/2 
comparisons are required. Table. I describes the computational 
time complexity between three methods for generating graph 
representative structure such as canonical label, grid code by 
F-GAF and our proposed graph code. Table. II shows the 
analysis of computational time complexity for code generation 
between three methods. Graph code can reduce at least 10

4 

times computational complexity when compared to canonical 
labeling. But it consumes a little more time than F-GAF in 
code generation. 

TABLE I.  COMPUTATIONAL TIME COMPLEXITY FOR CODE 

GENERATION BETWEEN THREE METHODS 

Technique Computational Complexity 

Canonical Labeling O(V!) 

F-GAF O(4E) 

Graph Code O(NE+(E*(E-1))/2) 

TABLE II.  ANALYSIS OF COMPUTATIONAL TIME COMPLEXITY FOR 

CODE GENERATION BETWEEN THREE METHODS 

No. of 

vertex 

No. of 

edge 

Canonical 

Labeling 

F-GAF Graph 

Code(N=19) 

10 10 3.63x106 4.00x10 2.35x102 

40 40 8.16x1047 1.60x102 1.54x103 

80 80 7.20x10118 3.20x102 4.68x103 

120 120 6.70x10198 4.80x102 9.42x103 

160 160 4.70x10284 6.40x102 1.58x104 

200 200 7.89x 10374 8.00x102 2.37x104 

 

 Table. III shows the computational time complexity for the 
whole process of code generation and automorphic detection 
between canonical labeling, F-GAF and proposed approach 
where k is number of graphs and assumes k = 100. The analysis 
of comparisons required by three methods is shown in Table. 

Algorithm 1 Proposed Approach 

Input: Gk 

Output:CS, Edge_Dictionary 

For each Gk  

   Generate graph information 
   Edge_Dictionary:=InsertEdgeDict(edge_info(G),Edge_Dictionary) 

   c(Gk) := GenGraphCode(adj_edgeinfo(Gk), Edge_Dictionary) 

   CS := DetectAutomorphism(c(Gk), CS) 

q_result := GraphIsomorphismQuery(q_graph, CS) 

return  



 

IV. Although our proposed graph code consumes a little more 
time in code generation than F-GAF, it can significantly seen 
that proposed approach can reduce at least 10

2 
times 

computational complexity for the whole process of code 
generation and automorphic detection when compared to 
canonical labeling and F-GAF. 

TABLE III.  COMPUTATIONAL TIME COMPLEXITY FOR WHOLE PROCESS 

OF CODE GENERATION AND AUTOMORPHIC DETECTION 

Technique Computational Complexity 

Canonical Labeling O ((V!) + k * ((V2)-V)/2)) 

F-GAF O ((4E) + k * (2+3E+(5V)2-V)) 

Graph Code O ((NE+(E*(E-1))/2) + k*2E*(V-2)) 

TABLE IV.  ANALYSIS OF COMPUTATIONAL TIME COMPLEXITY FOR 

WHOLE PROCESS OF CODE GENERATION AND AUTOMORPHIC DETECTION  

No. of 

vertex 

No. of 

edge 

Canonical 

Labeling 

F-GAF Graph 

Code(N=19) 

10 10 3.63x106 6.25x106 1.62x104 

40 40 8.16 x1047 1.00x108 3.06x105 

80 80 7.20x10118 4.00x108 1.25x106 

120 120 6.70x10198 9.00x108 2.84x106 

160 160 4.70x10284 1.60 x109 5.07x106 

200 200 7.89x 10374 2.50x109 7.94x106 

 

 Table V. reports the analysis of code generation time 
between proposed approach and CGRS. From the empirical 
analysis, the code generation time varies depending on the 
number of graphs. Number of graphs between 200 to 1000 
graphs is tested and takes the average code generation for 
comparison. Proposed approach consumes a little more time 
for preserving the structural information of the original graph 
such as two edges are connected on which vertex. CGRS 
consumes less time but their edge code can’t preserve the 
structural information of original graph. It may be possible that 
many incorrect results will be returned. 

TABLE V.  ANALYSIS OF CODE GENERATION TIME IN MILLISECONDS  

 Fig. 6 shows the analysis of the graph isomorphism query 
response time between proposed approach and CGRS. Both of 
the proposed approach and CGRS are implemented in java. 
Average query size is 100 and we apply chemical datasets with 
various sizes containing 100 to 40000 graphs. The 
experimental analysis of AIDS dataset reveals an optimistic 
performance of proposed approach over CGRS in graph 
isomorphism query. 

 

 

Fig. 6. Analysis of Graph Isomorphism Query Respose Time between 

Proposed Approach and CGRS 

VI. CONCLUSION AND FUTURE WORKS 

Instead of generating all possible permutation matrices or 

long grid code, proposed approach uses trie of data graphs’ 

codes to detect automorphic graphs and retrieve isomorphic 

graph. The edge dictionary is used to narrow down the search 

space of graph code. Trie is also efficiently used to reduce 

search space and query response time. From our experimental 

results, proposed approach outperforms the existing methods 

in automorphic detecting and graph isomorphism querying. 

Subgraph, supergraph and similarity query are going to be 

observed as future works. 
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