
Graph Code Based Isomorphism Query on Graph Data

Yu Wai Hlaing

University of Computer Studies, Yangon

yuwaihlaing.1987@gmail.com

Kyaw May Oo

University of Information Technology

kmayoo19@gmail.com

Abstract— The field of graph datasets and graph query

processing has received a lot of attention due to constantly

increasing usage of graph data structures for representing data

in different domains. Storing the graph in large dataset is a

challenging task as it deals with efficient space and time

management. To ensure the consistency of graph dataset, one of

the necessary procedures required is a mechanism to checks

whether two graphs are automorphic or not. Given a graph

query, it is also desirable to query isomorphic graphs quickly and

efficiently from a large dataset via its index. In this paper, we

propose a graph isomorphism querying approach that based on

graph code. Graph code is a graph representative structure that

can preserve the structural information of the original graph.

Graph isomorphism query can be efficiently processed via trie

that is constructed on graph codes of the data graphs. The

experimental results and comparisons offer a positive response to

the proposed approach.

Keywords—graph data; graph representative structure;

automorphism; isomorphism; graph querying

I. INTRODUCTION

 Graph is a powerful tool for representing and

understanding objects and their relationships in various

application domains. Conceptually, any kind of data can be

represented by graphs. The power of graphs to model the

complex datasets has been recognized by various researchers.

In Chemical informatics and bio-informatics, scientists use

graphs to represent compounds and proteins. Daylight system

[11], a commercial product for compound registration, has

already been used in chemical informatics. In recent years,

graph datasets have become more in use and the volume of

graph data increased rapidly.

 A well-known representation of graph structured data is an

adjacency matrix representation. Many graph datasets such as

chemical graphs have more than one vertex with the same

level. These graphs have more than one adjacency matrix

representation based on the ordering of same vertex labels,

and it becomes difficult to identify them uniquely. There are

possibilities that the same graph is stored more than once in

the graph dataset leading to the adverse results of mining.

Also, if stored more than once in different adjacency matrices,

a single graph affects the consistency of graph dataset [12].

 In the core of many graph-related applications, lies a

common and critical problem: how to efficiently process

graph queries and retrieve related graphs. In some cases, the

success of an application directly relies on the efficiency of

the query processing system. A primary challenge in

computing the answers of graph queries is that pair-wise

comparisons of graphs are usually really hard problems. A

naïve approach to compute the answer set of a graph query q

is to perform a sequential scan on the dataset’s graphs and to

check whether each graph dataset members satisfies the

conditions of q or not. However, the graph dataset can be very

large and which makes the sequential scan over the dataset

impractical. Thus, finding an efficient querying technique is

immensely important due to the combined costs of pair-wise

comparisons and the increasing size of modern graph datasets.

Clearly, it is necessary to build graph indices in order to help

processing graph queries. It is apparent that the success of any

graph data-based application is directly dependent on the

consistency of graph datasets and efficiency of the graph

indexing and querying mechanisms.
The rest of the paper is organized as follows. Section II

provides some definitions and introduces the notation that is
used in the paper. Section III describes the related works in
this area while the section IV focuses on the proposed
approach. Our experimental results are reported in section V.
Section VI gives the conclusion and future works.

II. DEFINITIONS AND NOTATION

 This section presents the key concepts, notations, and

terminology used in this paper, which include: labeled graph,

graph automorphism, graph isomorphism, canonical label and

graph code. As a general data structure, labeled graph is used

to model complicated structures and schemaless data. In

labeled graph, vertex and edge represent entity and

relationship, respectively. The chemical compound shown in

Fig. 1 is an undirected labeled graph.

A. Labeled Graph

A labeled graph G1 is a 5-tuple, {V, E, ΣV, ΣE, l} where V
is a set of vertices and E is a set of undirected edges. ΣV and
ΣE are the sets of vertex labels and edge labels respectively.
The labeling function l defines the mappings V → ΣV, E →
ΣE.

Fig. 1. A Labeled Graph(G1)

C C

C C

O

1 2

3 4

5

s

s

s

s s

B. Graph Automorphism

 An automorphism [9] between two graphs G1 and G2 is an

isomorphism mapping where G1 = G2. An isomorphism

mapping is a mapping of the vertices of G1 to vertices of G2

that preserve the edge structure of the graphs. That is, it is a

graph isomorphism from a graph G1 to itself.

 The graph G2 shown in Fig. 2 is automorphic to graph G1.

Fig. 2. Graph Automorphism(G1 = G2)

C. Graph Isomorphism

 An isomorphism [10] of graphs G1 and G2 is a bijection
between the vertex sets of G1 and G2; such that any two
vertices u and v of G1 are adjacent in G1 if and only if ƒ(u) and
ƒ(v) are adjacent in G2. This kind of bijection is generally
called "edge-preserving bijection".

D. Canonical Label

 A canonical labeling of graph G1 is an isomorphism-

invariant labeling of G1's vertices, i.e., two graphs G1 and G2

have the same canonical labeling if and only if they are

automorphic to each other [1], [2].

E. Graph Code

 For a graph G1, the code of G1, denoted by c(G1) is the list
of the form eid{(v), eid_adj,…}… depending on adjacent edges.
eid is the edge id, v is vertex label on which two edges are
connected, eid_adj is list of adjacent edge ids for this edge.

III. RELATED WORKS

 The significant of using graphs to represent complex

datasets has been recognized in different disciplines such as

chemical domain [3], computer vision [4], and image and

object retrieval [5].

 To avoid the ambiguity of representation and inefficiency

in the graph pattern search, canonical labeling approach that

produces a unique code for each graph called canonical label

has been used in Frequent Subgraph Discovery algorithm

(FSG) [6]. A simple way of defining the canonical label of an

undirected graph is to use the string obtained by concatenating

the upper triangular elements of the graph’s adjacency matrix

when this matrix has been symmetrically permuted such that

this string is lexicographically largest or smallest among the

strings obtained from all such permutations. If a graph

contains |V| vertices, the worst case time complexity to

compute its canonical code is O (V!) since |V|! permutations

of vertices have to be checked before selecting the minimum

(or maximum) code.

 Other popular attempt for detecting automorphic graph is

Fast-Graph Automorphic Filter (F-GAF) [7]. F-GAF detects

automorphic graphs in three phases. In preprocessing phase,

edge array of the graph is computed by grid traversal

technique. Then, the grid code is generated in feature

extraction phase. The grid code is a feature vector consisting

of the edge array, distinct vertex labels, the degrees and all

vertex labels with degrees of each of its neighbors of k
th

 graph.

In pattern matching phase, the grid code of Gk is compared

with those of other graphs in graph database to check

automorphism. For large graphs, the length of grid code can

be very long. It has overhead of space and expensive

processing time for detecting automorphic graphs.
A. N. Thaing and K. M. Oo propose Compact Graph

Representative Structure (CGRS) [8] called edge code. It has
two phases to generate edge code. In preprocessing phase, the
input xml file is parsed with xml parser. And then the edge
codes are generated in code generation phase. The edge code
is composed of array of edge ids follows by lists of edge ids
that are connected with this edge. These codes are used in
detecting automorphic graphs. In querying phase, the edge
code of the query is sequentially scanned over edge codes of
data graphs to retrieve isomorphic graph. The structural
information of the graph such as the two edges are connected
on which vertex can be lost. This can have large affects on the
accuracy of the result. It is possible that incorrect results will
be returned. It also has time overhead due to sequential
scanning for querying.

IV. PROPOSED APPROACH

In this section, our proposed graph isomorphism querying
approach that based on graph code for efficiently detecting
automorphic graphs and querying isomorphic graph is
described. There are two main phases in proposed approach.
In graph code generation phase, there are two sub-steps:
preprocessing and code generation. Edge dictionary and
adjacent edge information play important roles in code
generation. For a new graph, generate its graph code and make
automorphism test then determine to add its graph code or not.
In querying phase, all of the graph codes and corresponding
graph ids are inserted into trie. Then, query’s graph code is
probed in this trie to retrieve isomorphic graphs efficiently.

A. Preprocessing

In this phase, the graph information such as vertex
information, edge information, and adjacent edge information
are generated by parsing input xml files with xml parser. Then
the edge information of the graph is defined as (Vid,L,Vid)
where Vid is the vertex id, L is the edge label. Then adjacent
edge information is generated. Fig. 3 shows graph information
for graph G1 in Fig. 1.

G1 G2

C
C

C C

2 3

4

O
5

s

s s
s

s
C C

C C

O

1 2

3 4

5

s

s

s

s s

http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Bijection
http://en.wikipedia.org/wiki/Adjacent_%28graph_theory%29
http://en.wikipedia.org/wiki/If_and_only_if

Fig. 3. Graph Information of G1 (a) Vertex Information (b) Edge

Information (c) Adjacent Edge Information

 For each edge from the graph’s edge information, check

the edge dictionary to determine whether the edge is already

existed in edge dictionary or not. If not, insert new edge into

edge dictionary. Then, the edge ids are associated with their

corresponding edges in graph’s edge information. Edge

dictionary is shown in Fig. 4. The procedure processing edge

dictionary is shown as follow.

Fig. 4. Edge Dictionary

Procedure InsertEdgeDict(edge_info(G), Edge_Dictionary)

For each edge ei ∈ edge_info(G) do

If ∄ ei ∈ Edge_Dictionary then

 Add new edge information

return Edge_Dictionary

B. Code Generation

 A graph is represented holistically into a graph code that

preserves the structural information of the graph. Every edge

in the graph is assigned with global unique identifier already

defined in the edge dictionary. Instead of using the edge itself,

using the edge id of the edge dictionary can have advantages

in three ways:

 Firstly, using the edge id in the code saves the

amount of storage space.

 Secondly, using the same id for the duplicated edge is

effective when constructing the graph code.

 Thirdly, using the edge id in the code reduces the

time for finding automorphic or isomorphic graphs.

 Most of the chemical graphs have a lot of common edges.

So, edge dictionary uses little memory space. Edge dictionary

and adjacent edge information are used to generate graph

code. Graph code for graph G1 is as follows:

c(G1)=1{(c)1,1,1,1,2,2} 2{(c)1,1,(0)2,2}

 The procedure for graph code generation is described as

follow.

Procedure GenGraphCode(adj_edgeinfo (G), Edge_Dictionary)

c(G) := Ø

 For each eadj ∈ adj_edgeinfo (G) do

 Get id(eadj) from Edge_Dictionary

 Find connected vertex v of eadj

 Add these information to c(G)

return c(G)

C. Automorphic Detection

 After computing the graph code of Gk, compares it with

each graph code Gi in code store (CS), 1 <= i < k, to check

automorphism. If the graph code of Gk has the same code as

that of Gi, concludes that the graphs are automorphic and

append id of Gk to corresponding graph code. Otherwise, add

the graph code of Gk to CS assuming as Gk is a new graph.

Procedure for automorphic detection is as follow.

Procedure DetectAutomorphism(c(Gk), CS)

If k = 1 then

 Add c(Gk) to CS

 return CS

Else

For each c(Gi) ∈ CS

 If(c(Gi) = c(Gk)) then

 Append id of Gk to c(Gi)

 Else

 Add c(Gk) to CS

return CS

D. Graph Isomorphism Query

 Graph isomorphism query retrieves the graph in the dataset

that is isomorphic to the given query graph. It can be

responsively answered without candidate verification by using

proposed graph code. When the query is entered, it is

transformed into query’s graph code. This code is probed in

trie of dataset graphs’ codes. Trie is used as an index to

narrow down the query response time and search space. Then,

the dataset graph is returned that is isomorphic to query graph.

Procedure for graph isomorphism query is shown as follow.

Id Edge

1 <C,s,C>

2 <C,s,O>

… …

Vertex id : 1 2 3 4 5

Vertex Info : C C C C O

Vid,L,Vi: <1,s,2> <1,s,3> <2,s,4> <3,s,5> <4,s,5>

Edge Info: <C,s,C> <C,s,C> <C,s,C> <C,s,O> <C,s,O>

Edge: Adjacent Edges:

<1,s,2> <1,s,3>, <2,s,4>

<1,s,3> <1,s,2>, <3,s,5>

<2,s,4> <1,s,2>, <4,s,5>

<3,s,5> <1,s,3>, <4,s,5>

<4,s,5> <2,s,4>, <3,s,5>

(a)

(b)

(c)

Procedure GraphIsomorphismQuery(q_graph, CS)

For each c(Gi) ∈ CS

 Insert graph codes and ids into Trie

Generate q_graph code

Probe q_graph code in Trie

return result

 The following algorithm describes the step-by-step process

of our proposed approach.

V. EXPERIMENTAL RESULTS

 In this section, we present our experimental studies that
validate the effectiveness and efficiency of our approach by
comparing it with other existing methods. AIDS antiviral
screen dataset is used in the evaluation to test the effectiveness
of our proposed approach. All the experiments are performed
on an Intel(R) core(TM) i3-4010u 3.0GHz PC with 2GB
RAM, running the windows 32-bit operating system. All of
the methods are implemented in java.

A. AIDS Antiviral Screen Dataset

 The experiments described use the AIDS antiviral screen
dataset (AIDS for short). This dataset can be available
publicly. AIDS contains around 42,000 chemical compounds.
The graphs have average number of 25 vertices and 27 edges
and maximum number of 222 vertices and 251 edges. The
total number of distinct vertex labels is 62. The major portions
of vertices are C, O and N. All of the graphs are sparse graphs.
Most of the chemical compound datasets are in the form of
xml files and image files. So, the required storage space
between proposed graph code, xml file and image file are
evaluated. In Fig. 5, it can be seen that the storage space of our
graph code is significantly less than the other two well-known
storage formats.

Fig. 5. Analysis of Storage Space between Graph Codes, XML Files and

Image Files

 In proposed approach, computational time complexity for
generating graph code takes O(NE+(E*(E-1))/2) where V is
the number of vertices, E is the number of edges and N is the
size of edge dictionary. Proposed approach takes NE
comparisons to insert edges into edge dictionary and get edge
id from it. For getting adjacent edge information, (E*(E-1))/2
comparisons are required. Table. I describes the computational
time complexity between three methods for generating graph
representative structure such as canonical label, grid code by
F-GAF and our proposed graph code. Table. II shows the
analysis of computational time complexity for code generation
between three methods. Graph code can reduce at least 10

4

times computational complexity when compared to canonical
labeling. But it consumes a little more time than F-GAF in
code generation.

TABLE I. COMPUTATIONAL TIME COMPLEXITY FOR CODE

GENERATION BETWEEN THREE METHODS

Technique Computational Complexity

Canonical Labeling O(V!)

F-GAF O(4E)

Graph Code O(NE+(E*(E-1))/2)

TABLE II. ANALYSIS OF COMPUTATIONAL TIME COMPLEXITY FOR

CODE GENERATION BETWEEN THREE METHODS

No. of

vertex

No. of

edge

Canonical

Labeling

F-GAF Graph

Code(N=19)

10 10 3.63x106 4.00x10 2.35x102

40 40 8.16x1047 1.60x102 1.54x103

80 80 7.20x10118 3.20x102 4.68x103

120 120 6.70x10198 4.80x102 9.42x103

160 160 4.70x10284 6.40x102 1.58x104

200 200 7.89x 10374 8.00x102 2.37x104

 Table. III shows the computational time complexity for the
whole process of code generation and automorphic detection
between canonical labeling, F-GAF and proposed approach
where k is number of graphs and assumes k = 100. The analysis
of comparisons required by three methods is shown in Table.

Algorithm 1 Proposed Approach

Input: Gk

Output:CS, Edge_Dictionary

For each Gk

 Generate graph information
 Edge_Dictionary:=InsertEdgeDict(edge_info(G),Edge_Dictionary)

 c(Gk) := GenGraphCode(adj_edgeinfo(Gk), Edge_Dictionary)

 CS := DetectAutomorphism(c(Gk), CS)

q_result := GraphIsomorphismQuery(q_graph, CS)

return

IV. Although our proposed graph code consumes a little more
time in code generation than F-GAF, it can significantly seen
that proposed approach can reduce at least 10

2
times

computational complexity for the whole process of code
generation and automorphic detection when compared to
canonical labeling and F-GAF.

TABLE III. COMPUTATIONAL TIME COMPLEXITY FOR WHOLE PROCESS

OF CODE GENERATION AND AUTOMORPHIC DETECTION

Technique Computational Complexity

Canonical Labeling O ((V!) + k * ((V2)-V)/2))

F-GAF O ((4E) + k * (2+3E+(5V)2-V))

Graph Code O ((NE+(E*(E-1))/2) + k*2E*(V-2))

TABLE IV. ANALYSIS OF COMPUTATIONAL TIME COMPLEXITY FOR

WHOLE PROCESS OF CODE GENERATION AND AUTOMORPHIC DETECTION

No. of

vertex

No. of

edge

Canonical

Labeling

F-GAF Graph

Code(N=19)

10 10 3.63x106 6.25x106 1.62x104

40 40 8.16 x1047 1.00x108 3.06x105

80 80 7.20x10118 4.00x108 1.25x106

120 120 6.70x10198 9.00x108 2.84x106

160 160 4.70x10284 1.60 x109 5.07x106

200 200 7.89x 10374 2.50x109 7.94x106

 Table V. reports the analysis of code generation time
between proposed approach and CGRS. From the empirical
analysis, the code generation time varies depending on the
number of graphs. Number of graphs between 200 to 1000
graphs is tested and takes the average code generation for
comparison. Proposed approach consumes a little more time
for preserving the structural information of the original graph
such as two edges are connected on which vertex. CGRS
consumes less time but their edge code can’t preserve the
structural information of original graph. It may be possible that
many incorrect results will be returned.

TABLE V. ANALYSIS OF CODE GENERATION TIME IN MILLISECONDS

 Fig. 6 shows the analysis of the graph isomorphism query
response time between proposed approach and CGRS. Both of
the proposed approach and CGRS are implemented in java.
Average query size is 100 and we apply chemical datasets with
various sizes containing 100 to 40000 graphs. The
experimental analysis of AIDS dataset reveals an optimistic
performance of proposed approach over CGRS in graph
isomorphism query.

Fig. 6. Analysis of Graph Isomorphism Query Respose Time between

Proposed Approach and CGRS

VI. CONCLUSION AND FUTURE WORKS

Instead of generating all possible permutation matrices or

long grid code, proposed approach uses trie of data graphs’

codes to detect automorphic graphs and retrieve isomorphic

graph. The edge dictionary is used to narrow down the search

space of graph code. Trie is also efficiently used to reduce

search space and query response time. From our experimental

results, proposed approach outperforms the existing methods

in automorphic detecting and graph isomorphism querying.

Subgraph, supergraph and similarity query are going to be

observed as future works.

Acknowledgment
This research was supported by University of Computer

Studies, Yangon and University of Information Technology.
We thank our colleagues who provided insight and expertise
that greatly assisted the research.

References
[1] A. Inokuchi, T. Washio, and H. Motoda, “Complete mining of frequent

patterns from graphs”, Mining graph data, Machine Learning 50(3),
2003, pp 321-354.

[2] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation”, In Proc. of ACM SIGMOD Int. Conf. on Management of
Data, Dallas, Taxas, May 2000.

[3] R. N. Chittimoori, L. B. Holder, and D. J. Cook, “Applying the
SUBDUE substructure discovery system to the chemical toxicity
domain”, In Proc. of the 12th international Florida AI, Research Society
Conference, 2003, pp 90-94.

[4] D. A. Piriyakumar, and P. Levi, “An Efficient A* based algorithm for
optimal graph matching applied to computer vision”, In GRWSIA-98,
Munich, 1998.

[5] D. Dupplaw, and P. H. Lewis, “Content-based image retrieval with
scale-spaced object trees”, Proc. of SPIE: Storage and Retrieval for
Media Databases, Volume 3972, 2000, pp 253-261.

No. of

graphs

Proposed Approach CGRS

Total code
generation

time

Average
code

generation

time

Total code
generation

time

Average
code

generation

time

200 26516 132.58 25422 127.11

400 73274 183.19 70327 175.82

600 123322 205.54 121140 201.90

800 179680 224.60 176528 220.66

1000 256071 256.10 253791 253.79

[6] M. Kuramochi, and G. Karypis, “Frequent subgraph discovery”, Proc. 1st
IEEE Int. Conf. on Data Mining (ICDM 2001), San Jose, CA, IEEE
Press, Piscataway, NJ, USA, 2001, pp 313-320.

[7] R. Vijayalakshmi, R. Nadarajan, P. Nirmala, and M. Thilaga, “A novel
approach for detection and elimination of automorphic graphs in graph
databases”, Int. J. Open Problems Compt. Math., Vol 3, No. 1, March
2010.

[8] A. N. Thaing, and K. M. Oo, “CGRS: compact graph representative
structure for efficient graph querying in chemical compound graph
databases”, in Proceeding of the 12th International Conference on
Computer Applications, 2014.

[9] https://en.wikipedia.org/wiki/Graph_Automorphism

[10] https://en.wikipedia.org/wiki/Graph_isomorphism

[11] C. A. James, D. Weininger, and J. Delany, “Daylight theory manual
daylight version 4.82. daylight chemical information system”, Inc, 2003.

[12] R. C. Read and D. G. Corneil, “The graph isomorph disease”, Journal of
Graph Theory, 1977, pp 339-363.

https://en.wikipedia.org/wiki/Graph_Automorphism
https://en.wikipedia.org/wiki/Graph_isomorphism

